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Abstract

Post-Moore’s law scaling is creating a disruptive shift in simulation workflows, as saving the
entirety of raw data to persistent storage becomes expensive. We are moving away from
a post-process centric data analysis paradigm towards a concurrent analysis framework, in
which raw simulation data is processed as it is computed. Algorithms must adapt to ma-
chines with extreme concurrency, low communication bandwidth, and high memory latency,
while operating within the time constraints prescribed by the simulation. Furthermore, in-
put parameters are often data dependent and cannot always be prescribed. The study of
sublinear algorithms is a recent development in theoretical computer science and discrete
mathematics that has significant potential to provide solutions for these challenges. The
approaches of sublinear algorithms address the fundamental mathematical problem of un-
derstanding global features of a data set using limited resources. These theoretical ideas
align with practical challenges of in-situ and in-transit computation where vast amounts of
data must be processed under severe communication and memory constraints. This report
details key advancements made in applying sublinear algorithms in-situ to identify features
of interest and to enable adaptive workflows over the course of a three year LDRD. Prior to
this LDRD, there was no precedent in applying sublinear techniques to large-scale, physics
based simulations. This project has definitively demonstrated their efficacy at mitigating
high performance computing challenges and highlighted the rich potential for follow-on re-
search opportunities in this space.
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Chapter 1

Introduction

Steady improvements in computing resources enable ever more enhanced scientific simu-
lations, however Input/Output (I/O) constraints are impeding their impact. Historically,
scientific computing workflows have been defined by three independent stages (see Fig-
ure 1.1(a)): 1) a pre-processing stage comprising initialization and set up (for example mesh
generation, or initial small-scale test runs); 2) the scientific computation itself (in which data
is periodically saved to disk at a prescribed frequency); and 3) post-processing and analysis
of data for scientific insights. With improved computing resources scientists are increasing
the temporal resolution of their simulations. However, as computational power continues to
outpace I/O capabilities, the gap between time steps saved to disk keeps increasing. This
compromise in the fidelity of the data being saved to disk makes it impossible to track features
with timescales smaller than that of I/O frequency. Moreover, this situation is projected to
worsen as we look ahead to future architectures with improvements in computational power
continuing to significantly outpace I/O capabilities [48, 2], see Table 1.1.

Consequently, we are seeing a paradigm shift away from the use of prescribed I/O fre-
quencies and post-process-centric data analysis, towards a more flexible concurrent paradigm
in which raw simulation data is processed in-situ as it is computed, see Figure 1.1 (b). In
spite of the paradigm shift, concurrent processing does not provide a complete solution, as
it requires all analysis questions be posed a priori. This is not always possible as scientists
often analyze their data in an interactive and exploratory fashion. One potential solution, is
to store data judiciously for only the time segments that will merit further analysis. How-
ever, the problem with this approach is that the computation required to automatically and
adaptively make decisions regarding the workflow (e.g,. I/O and/or in-situ data analysis
frequencies) based on simulation state can be prohibitively expensive in their own right.
Therefore, one of the more pressing fundamental research challenges is the need for effi-
cient, adaptive, data-driven control-flow mechanisms for extreme-scale scientific simulation
workflows.

This LDRD research focused on addressing several pressing fundamental high-performance
computing (HPC) challenges posed by moving to this new workflow paradigm:

• At what frequency should I/O or analysis be peformed?
• Can we make this decision in an adaptive, data-driven decision at runtime?
• How can we make these decisions quickly and efficiently?
• How do we design efficient analysis algorithms given in-situ constraints?
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Figure 1.1. (a) An illustration of a traditional workflow
made up of 3 stages: 1) pre-procesing, 2) scientific compu-
tation and I/O at a prescribed rate, 3) analysis as a post-
process. (b) Computational capabilities are outpacing I/O
on future architectures, causing a change in workflows as
some portion of the analysis moves in-situ. Most current
day workflows remain static, with the frequency of I/O and
analysis being prescribed upfront by the scientists. (c) This
work introduces the use of indicators and triggers to support
adaptive workflows. The indicator and trigger are lightweight
functions evaluated at a high frequency to make dynamic
data-driven control-flow decisions.

Sublinear Algorithms A recent development in theoretical computer science and mathe-
matics is the study of sublinear algorithms, which aim to understand global features of a data
set while using limited resources. Often enough, we do not need to look at the entire data
to determine some of its important features. The field of sublinear algorithms [20, 40, 42]
makes precise the settings when this is possible and combines discrete math and algorithmic
techniques with statistical tools to quantify error and give trade-offs with sample sizes. This
confidence measure is necessary for adoption of such techniques by the scientific computing
community, whose scientific results can be used to make high-impact decisions.

Formally, given a function, f : D → R, we assume for any x ∈ D, we can query f(x).
For example, in S3D simulations we have D = [n]3 as a structured grid, and R = R can
be the temperature values. If D = [n] and R = {0, 1}, then f represents an n-bit binary
string. If R = {A, T,G,C}, f could represent a DNA segment. If D = [n]2, the function
could represent a matrix (or a graph). Note D can also be an unstructured grid, modeled as
a graph. Similarly, almost any data analysis input can be cast as a collection of functions
over a discrete or discretized domain.

We are interested in some specific property of f , which is phrased as a yes/no question.
For instance, in a jet simulation we can ask if there exists a high-temperature region spanning
the x-axis of the grid. How can we determine if f satisfies property P without querying all of
f? It is impossible to give an exact answer without knowledge of f . To formalize what can be

12



Table 1.1. Expected exascale architecture parameters
for the design of two “swim lanes” of very different design
choices [48, 2]. Note the drastic difference between expected
improvements in I/O and compute capacities in both swim
lanes.

System Parameter 2011 2018 Factor Change

System Peak 2 Pf/s 1 Ef/s 500
Power 6 MW ≤ 20 MW 3

System Memory 0.3 PB 32-64 PB 100-200
Total Concurrency 225K 1B× 10 1B × 100 40000-400000
Node Performance 125 GF 1TF 10 TF 8-80
Node Concurrency 12 1000 10000 83-830

Network Bandwidth 1.5 GB/s 100 GB/s 1000 GB/s 66-660
System Size (nodes) 18700 1000000 100000 50-500

I/O Capacity 15 PB 30-100 PB 20-67
I/O Bandwidth 0.2 TB/s 20-60 TB/s 10-30

inferred by querying o(|D|) values of f , we use a notion of the distance to P 1. Every function
f has a distance to P , denoted εf , where εf = 0 iff f satisfied P . To provide an exact answer
to questions regarding P , we determine whether εf = 0 or εf 6= 0. However, approximate
answers can be given by choosing some error parameter ε > 0 and then determining whether
we can distinguish εf = 0 from εf > ε. The theory of sublinear algorithms shows whether
the latter question can be resolved by an algorithm that samples o(|D|) function values.

For a sublinear algorithm, there are usually three parameters of interest: the number of
samples t, the error ε, and the confidence δ. As described earlier, the error is expressed as
the distance to P . Analysis shows that for a given t, we can estimate the answer within
error ε with a confidence of > 1− δ. Conversely, given ε, δ, we can compute the number of
samples required.

Although at a high level, any question that can be framed in terms of determining global
properties of a large domain is subject to a sublinear analysis, surprisingly, the origins of
this field have nothing to do with “big data” or computational challenges in data analysis.
The birth of sublinear algorithms is in computational complexity theory [41]. Hence, prac-
tical performances of these methods on real applications have not been fully investigated.
Recent work by some of the authors showcase the potential of sampling algorithms in graph
analysis [45, 46, 29, 25, 24, 3], and the generation of application-independent generation of
colormaps [50].

1 f(n) = o(g(n)) means for all c > 0 there exists some k > 0 such that 0 ≤ f(n) < cg(n) for all n ≥ k.
The value of k must not depend on n, but may depend on c.
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Potential of Sublinear Algorithms in Mitigating HPC Challenges Moving analysis
algorithms in-situ poses a number of technical challenges. First, algorithms will be sharing
compute resources with the simulation, which poses constraints on the algorithmic choices.
In particular, memory is expected to be a bottleneck in exascale computers and beyond (see
Table 1.1), and thus we may have to work with data structures of the application, and not be
able to build auxiliary data structures that will improve the performance of our algorithms.
Secondly, the data layout will be dictated by the simulation, locally at the node level and
globally at the system level. This layout will not necessarily be favorable for our algorithms,
yet pre-processing to move the data will be infeasible at large scales. Thirdly, algorithms
performed in-situ need to be fast, so that they do not slow down the simulation computation.
For instance, any analysis to enable judicious I/O cannot take more time than the I/O itself.

In addition to making analysis algorithms themselves more efficient, we expect that
long-term, sampling-based algorithms, especially sublinear algorithms, will also play an im-
portant role in the enabling of adaptive workflows in the exascale era and beyond. First,
the small number of samples grant runtime efficiency, which enable working concurrently
with the simulation, with negligible effect on runtime. The error/confidence bounds quan-
tify the compromise in accuracy compared to full analysis. Moreover, for most problems,
the number of samples required only depend on error/confidence bounds, which lead to per-
fect scalability of these algorithms for extreme problem sizes. The memory requirements of
sublinear algorithms are also small, and typically only in the order of the samples. In some
cases, additional data structures may be necessary to enable random sampling, but even
such structures are not memory-intensive.

With this LDRD research, we showcase several advancements in which applications of
sublinear algorithms mitigate HPC challenges posed by the paradigm shift to in-situ work-
flows. In Chapter 2 we show how sublinear algorithms can be deployed to identify features of
interest through efficient color map generation. In Chapter 3 we show how sublinear trigger
detection can be used to enable adaptive in-situ workflows. We conclude this report with
a discussion of the LDRD accomplishments in Chapter 4 and a presentation of conclusions
and lessons learned in Chapter 5.
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Chapter 2

Identifying Features of Interest:
Sublinear Colormaps1

Color is the most relative medium in art.
— Josef Albers, Interaction of Color

Color is one of the most prevalent tools used in scientific visualization and possibly the
easiest to misuse – knowingly, or, as this work considers, unknowingly. As Albers notes,
and cognitive neuroscience has established experimentally, human perception of color is only
relative to its surroundings. Within a single image, color can be used to identify spatial
trends at varying scales, discriminate between neighboring values, and even gauge absolute
values to some degree.

However, there are very few tools to design the maps between numbers we wish to illus-
trate and colors that will aid in their undistorted perception2. General-purpose visualization
tools are often given data with no description of its source, no units of measurement, no
accuracy of its computation or measurement, no measurements of its trends, nor any indica-
tion of how importance is defined. Large datasets that cannot be held in memory (or require
a high-performance computer with distributed memory) may not provide easy access to such
summary information. It is difficult to choose a good colormap with some expert knowledge
of the dataset.

Most default colormaps are defined by linearly interpolating dataset values between the
maximum and minimum in the range of the dataset. This is computationally cheap but dis-
regards the distribution of values within the data. Consider Figures 2.3(a) and 2.3(b), which
show temperatures inside a rotating disk reactor. These were generated by the standard
tools VisIt and ParaView respectively. It is not all clear from these figures that there are
three special boundary conditions in this data. For example, the entire outer surface of the
cylinder has the same temperature of 293.15◦C, distinct from all other points. The bottom
part has a temperature of 303.15◦C, also distinct from all other points. These are completely
obscured by the simplistic linear interpolation of color.

1The material presented in this chapter was also reported in [50].
2It is arguably impossible to say that a particular person’s perception is biased or unbiased, but it may

be possible to quantify how a population’s perception of a particular feature is proportional to the evidence
for it provided by the data relative to other features in the same data.
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Clearly, choosing an informative colormap requires some data analysis. But analysis
techniques providing detailed information about the data require possibly expensive pre-
processing stages. For instance, information regarding relative frequencies of values and
spatial relationships could be useful for a good colormap. But how does one obtain this
information for a large dataset without affecting the running time of the actual visual pre-
sentation? In this work, we address this problem with an efficient method to generate
colormaps via random sampling. These colormaps identify discrete values that occur with
high probability – some fraction τ of the dataset or larger – and apply a continuous color-
palette curve to the remaining CDF by quantile, so that perceptible changes in color are
assigned to equiprobable ranges of values.

Theoretically, our algorithm is simple and provably robust. In practice, with a negligible
overhead our algorithm yields images that better highlight features within the data. Most
importantly, the required sample size depends only on desired accuracy parameters and is
independent of the dataset size. However, as with any sampling approach, this technique
may fail to discover exceedingly rare events; we relate sample size to the probability 1−δ that
an event more frequent than τ goes undetected. Events less frequent than τ are considered
negligible. For reasonably small values of τ and δ, the sample size is practical – but it does
grow quickly as τ is decreased.

Contributions

Consider visualizing a large dataset. If there are certain “prominent” values that occur with
high frequency, then we might want these to take on special colors to highlight them. Con-
tinuous data may not uniformly occupy its range, and for some applications it is important
to visualize overall trends in the colored attribute while in others it is small deviations from
the trend that are important. We devise a new simple and scalable algorithm to design such
color maps. The salient features of our algorithm follow.

• We introduce a simple sampling-based routine for approximately identifying promi-
nent values and ranges in data. We provide a formal proof of correctness (including
quantifiable error bounds) for this routine using probability concentration inequalities.
• The number of samples required by our routine only depends on the accuracy desired

and not on the data size. For example, suppose we wish to find all values that occur
with more than 1% frequency (in the data). Then, the number of samples required is
some fixed constant, regardless of data size.
• Given these approximate prominent values and ranges in the data, we provide an

automated technique for generating discrete and/or continuous color maps.

We empirically demonstrate our results on a variety of datasets. Consider Figure 2.3.
The rightmost figure shows the coloring output by our algorithm, and notice how it picks
up the three prominent values (and one range) in the data. This allows for a coloring that
highlights the boundary conditions, as opposed to the standard colormaps.
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2.1 Related Work and Background

The most well-known work on color in scientific visualization is Brewer’s treatise on the
selection of color palettes [13, 14, 15]. Her thesis and much surrounding literature [39, 26]
focus on choosing palettes that 1) avoid confounding intensity, lightness, or saturation with
hue either by co-varying them or using them to convey separate information; and 2) relate
perceptual progressions of color with progressions of values in the data to be illustrated or
– when the values being illustrated have no relationship to each other – to avoid perceptual
progressions of colors so that the image does not imply a trend that is absent in the data.
Other work[34, 11] discusses fundamental flaws with the commonly used default “rainbow”
colormap and presents results on diverging color maps which have since been adopted by
many in the community as they perform much better than the rainbow colormap in scientific
visualization settings. Eisemann et al. [18] propose a family of pre-color-map transforms that
transition from linear scaling (where all values in a range have the same importance) to a
kind of histogram-equalized scaling (where values that frequently occur in the dataset are
given more importance). They claim that linear scaling provides a way to discover outliers,
but this is only true if the data has a single central tendency; outliers between multiple ten-
dencies could well be masked by a linear scale. Also, perceptual differences between colors
mapped to values are not considered. Finally the technique is not inherently scalable since it
requires sorting all observed values, although it could likely be adapted to use representative
subsamples. However, they identify a key factor in colormap design for exploratory visu-
alization: without problem-specific knowledge, attempts to improve discrimination between
values oppose attempts to remove unused ranges of values.

Other significant work has studied the generation of transfer functions for volume ren-
dering. Here, work includes the use of entropy to maximize the “surprisal” and thus the
information content of the image [9].The work of [38, 27] compare a number of transfer
function generation techniques and provide good high-level overviews of the research in this
area. Borkin et al. [10] note that when a specific setting is being targeted, visualizations –
including the colormap – should be chosen to match. However, in this work we consider the
task given to general-purpose visualization tools: how should default renderings of datasets
provided without any context be created? Finally, tone mapping [30] has been used to ad-
just images that contain more contrast than their presentation medium is able to provide by
modeling how the human visual system deals with contrast.

A color model is a mathematical abstraction in which colors are represented as tuples of
values. Common color models include RGB, CMYK, and HSV. These and other color models
differ in how the tuples of values are interpreted and combined to achieve the spectrum of
attainable color values. For example, RGB uses additive color mixing, storing values of
red, green, and blue. Not all devices can represent and capture colors equally. A color
space defines a relationship between coordinates defined by a color model and the human
perception of those coordinates – over some subset of coordinates that may be perceived.
The gamut of a device is defined to be the subset of the color space that can be represented
by the device, and those colors that cannot be expressed within a color model are considered
out of gamut. CIELAB is a color space that was created to serve as a device-independent
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(a) (b)

Figure 2.1. The horse-shoe shape in these figures demon-
strates the chromaticities visible to the average human. In
(a) the white triangle is the gamut of the RGB color space
and a palette curve and palette point are shown in this space.
In (b) multiple MacAdam ellipses are shown to highlight per-
ceptual non-uniformities in the color space.

model to be used as a reference. It describes all colors that the human eye can see and is
defined by three coordinates: L represents the lightness of a color, a represents its position
between green and magenta/red, and b represents its position between yellow and blue.

The distance between colors is often defined in terms of the Euclidean distance between
two colors in CIELAB space and is typically referred to as ∆E. Different studies have pro-
posed different ∆E values that have a just noticeable difference (JND). Often a value of
∆E≈ 2.3 is used, however, several variants on the ∆E function have been introduced to ad-
dress perceptual non-uniformities in the CIELAB color space. These non-uniformities can be
visually depicted by MacAdam ellipses, which are elliptical regions that contain colors that
are considered indistinguishable. These ellipses were identified empirically by MacAdam [32]
who found that the size and orientation of ellipses vary widely depending on the test color.
Figures 2.1(a) and 2.1(b) demonstrate the chromaticities (the quality of a color indepen-
dent of its brightness), visible to the average human. In Figure 2.1(a) the white triangle
is the gamut of the RGB color space and a palette curve and palette point are shown in
this space. In Figure 2.1(b) multiple MacAdam ellipses are shown to highlight perceptual
non-uniformities in the color space.

2.2 Overview of Our Approach

It is convenient to think of a dataset as a distribution D of values. Formally, pick a uniform
random point in the data, and output the value at that point. This induces the distribution
D on values we focus upon. We will fix τ ∈ (0, 1) and positive integer ν as parameters to

18



our procedure. We will set δ ∈ (0, 1) as a failure probability for our algorithm.

We begin with identifying prominent values. These are values that make up at least a τ -
fraction of the complete dataset. (In terms of D, these are values with at least τ probability.)
Once these are identified, these can be “removed” from D to get a distribution D′. This can
be viewed as modeling D with a mixture of a discrete distribution and another distribution
D′ that we approximate as continuous. Formally, D′ is the distribution induced by D on all
values except the prominent ones.

Next we divide the real line into ν intervals, where each interval has 1/ν probability in D′.
This splitting provides an approximate CDF – to within 1/ν with probability 1−δ – that can
be used for coloring data other than prominent values by quantile (i.e., histogram-equalized).

One of our contributions is a simple algorithm that (provably) approximately computes
this in time that only depends on τ, ν, δ. It does not depend on the size of the actual data,
and only on the required precision (which is quantified by these parameters).

To generate our colormap, we first assign the prominent values perceptually distant
palette points. Intervals of equal probability are then distributed evenly along a palette curve
parameterized by perceptual uniformity in order to make the distribution of data over the
scale as perceptible as possible. This gives the final colormap. Finally, we provide a second
colormap that alternates luminance between light and dark values for each equiprobable
portion of D′ in order to aid in identifying small local deviations within a single tendency of
the data.

The interval identification is thus effectively a sample-based approximation to histogram
equalization, however our algorithm performs this step after the prominent values have
been separated from the dataset samples so that discrete behavior will not bias the density
estimate 3.

Because quantiles are less sensitive to outliers than the PDF, extreme values do not have
an exaggerated effect on coloring. Our approach does not provide outlier identification and
we contend that – for large data – outliers should be considered in a separate sampling biased
toward them once prominent intervals have been confirmed as conceptually significant by a
domain expert. Otherwise small samples are unlikely to be effective at identifying outliers.

It is important to note that sampling is important in order to obtain scalability [37];
when data is distributed across multiple processes with no guarantees on the uniformity of
the distribution. A naive exact CDF computation can easily exceed the memory available
to a single process, while bucketing can require significant memory and network bandwidth
to properly compute.

3 One example of mixed discrete and continuous behavior is rainfall totals; samples are generally mod-
eled [49] as a mixture [21] of clear days (a discrete distribution with only 1 possible rainfall total) and rainy
days (which tend to have an exponential or, more generally, gamma distribution of precipitation totals [23]).
One might expect – and this work demonstrates – similar behavior from simulations, where some regions are
static due to boundary or initial conditions while others evolve into approximations of continuous behavior.
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The next section details the algorithm we use for computing colormaps; after that, we
present the mathematics, both proof and algorithms, for sampling and for detecting promi-
nent values and important intervals.

2.3 Mapping Scalar Values to Color

We formally describe our procedure for mapping data values to color according to the distri-
bution of scalar values within the data. We assume the following are provided as input to the
mapping algorithm: 1) a palette curve and palette points; and 2) a list of prominent values
in the data and an approximate CDF for the remaining data. The CDF comprises a collec-
tion of n disjoint and contiguous intervals, B1, . . . , Bn. Each Bi has an associated minimum
function value fmini and maximum function value fmaxi , simply corresponding to the left and
right endpoints of Bi. Furthermore, each Bi also has an associated set of samples, whose
size is denoted by s(Bi). See the bottom of Figure 2.2(b), where the relative heights of bars
in Bi denote the size of s(Bi). These represent an approximate CDF in that (roughly speak-
ing), the CDF value at the right endpoint of Bi is given by

∑i
j=1 s(Bj)/

∑n
j=1 s(Bj). (In

Section 2.4, we describe a provably robust sampling-based approach for the quick estimation
of this information.)

Given the input, we first assign a unique color to each prominent value. Next, we dis-
cretize the palette curve p into k individual palette points of ∆E≈ 2.3 (this value is tunable),
see Figure 2.2(b).

Given a scalar value, f we compute an interpolation factor, tf , based on the position of
f in the CDF. (Again, refer to Figure 2.2(b).) To do this we identify the bucket Bi that
contains f and compute:

tf =

∑i−1
j=1 s(Bj) +

(
f−fmin

i

fmax
i −fmin

i

)
∗ s(Bi)∑n

j=1 s(Bj)

Once we have identified tf , we compute the final color, cf , using the palette curve p with
k palette points as

j = tf ∗ k,

tj = j − floor(j),

cf = cj + tj(cj+1 − cj).

Implementation Details: As Eisemann et al. note [18], colormap definitions have op-
posing objectives in exploratory visualization where problem specifics are unknown; it is
impossible to discern whether similar values should be perceptually similar in order that
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trends across large differences in function values may be detected or whether similar values
should be perceptually distinct in order that small differences may be detected. We provide
two colormaps for these two situations that users must choose between: an inter-mode map
that varies hues smoothly and at constant luminance within CDF intervals and an intra-mode
colormap that varies hue smoothly but rapidly alternates luminance between high and low
values to provide visual cues for discriminating between small differences in value. We name
the situations inter- and intra-mode because one might find the former useful for contrasting
behavior across different spatial or statistical modes; and the latter useful for contrasting
behavior within a given mode. This use of luminance is similar to the use of structured light
to highlight small geometric features [52]. Furthermore, prominent values can be empha-
sized or de-emphasized within an image by modifying the lightness of the associated color
in CIELAB space. We use the Little CMS color engine [33] to perform all transformations
between color spaces and compute ∆E distances between colors.

(a)

(b)

Figure 2.2. Consider a dataset with two prominent val-
ues, P1, P2 and overall range R1. In figure (a) a simple linear
interpolation scheme is depicted in which the color associated
with the value f is independent of the distribution of values
in the dataset. In (b) the two prominent values are assigned
the colors yellow and purple respectively. The range is as-
signed blue-red. Using our CDF-based interpolation scheme,
we obtain a color for the function value f that is determined
by the important interval and associated range to which f be-
longs. In out future work, we point out that should we have
a way to split ranges, a second green-orange palette curves
might be used to illustrate samples from apparently distinct
populations.
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2.4 Prominent Values and the CDF Approximation

We describe the sampling approaches used to determine prominent values and important
intervals of a dataset. We employ two simple sampling algorithms for this purpose. The first
algorithm does a direct sampling to determine frequent values in the dataset. The second
algorithm constructs a series of intervals, such that the frequency of data within each interval
is roughly the same. Note that a large variance in the lengths of these intervals indicates a
non-uniformity in data value distribution. These intervals represent our approximate CDF.

We treat our data as a discrete distribution, where for each value r, pr is the fraction of
the dataset where the value r is attained (So {pr} describes a distribution over the range of
the dataset). We use D to denote this distribution and R to denote the support. For any
set S (often an interval of the real line), we use P (S) to denote the probability mass of S.

The analysis of both algorithms follow from straightforward applications of Chernoff
bounds. We state the multiplicative Chernoff bound (refer to Theorem 1.1 in [17]) for sums
of independent random variables.

Theorem 2.4.1 [Chernoff bound] Let X1, X2, . . . , Xk be independent random variables in
[0, 1] and X =

∑k
i=1Xi.

• (Lower tail) For any ε > 0,

Pr[X < (1− ε)E[X]] ≤ exp(−ε2E[X]/2).

• (Upper tail) For any ε > 0,

Pr[X > (1 + ε)E[X]] ≤ exp(−ε2E[X]/3).

• (Upper tail) For any t > 2eE[X],

Pr[X > t] ≤ 2−t.

In our theorems, we do not attempt to optimize constants. The running time of our
algorithms does not depend on the data size, and the theorems are basically proof of concepts.
Our empirical work will show that the actual samples sizes required are quite small. For
convenience, we use c and c′ to denote sufficiently large constants. Our algorithms will take
as input a sample size parameter. Our theorems will show that this can be set to a number
that only depends on precision parameters, for desired guarantees.

2.4.1 Finding Prominent Values

Our aim is to determine values of r such that pr > τ is large, where τ ∈ (0, 1) is a threshold
parameter.
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find-prominent(s, τ)

Inputs: sample size s, threshold τ
Output: the “frequent set” of range elements, I.

1. Generate set S of s independent random samples from D
2. Initialize important set I = ∅.
3. For any element r ∈ D that occurs more than sτ/2 times in S,

Add r to I.
4. Output I.

The following theorem states that (up to some approximation), I is indeed the set of frequent
elements. The constants in the following are mainly chosen for presentation. (Instead of
pr < τ/8 in the following, we can set it to τ/α, for any α > 1, and choose s accordingly.)
Throughout our theorems, we use δ for a tunable error parameter that decides the sample
size s. Note that it is not an explicit parameter to the algorithms.

Theorem 2.4.2 Set s = (c/τ) ln(c/(τδ)). With probability > 1− δ (over the samples), the
output of find-prominent(τ, δ) satisfies the following.

If pr > τ , then r ∈ I.
If pr < τ/8, then r /∈ I.

Proof: We first prove that with probability at least 1 − δ/2, for all pr > τ , r ∈ I. Then
we show that with probability at least 1− δ/2, for all pr < τ/8, r /∈ I. A union bound then
completes the proof.

Consider some r such that pr > τ . Let Xi be the indicator random variable for the
event that the ith sample is r. So E[Xi] = pr and all Xis are independent. We set X =∑

i≤sXi and apply the Chernoff lower tail of Theorem 2.4.1 with ε = 1/2. Hence, Pr[X <
E[X]/2] ≤ exp(−E[X]/8). Note that E[X] = prs > sτ . We obtain Pr[X < sτ/2] ≤
Pr[X < E[X]/2] ≤ exp(−E[X]/8) ≤ exp(−sτ/8). Since s = (c/τ) ln(c/(τδ)), exp(−sτ/8) =
exp(−c ln(c/(τδ)) ≤ δτ/16.

Putting it together, Pr[X < sτ/2] < δτ/16. Hence, in our algorithm, the element r will
not be in I with probability at most δτ/16. There are at most 1/τ values of r such that
pr > τ . By the union bound, the probability that there exists some such value of r occurring
less than sτ/2 times is at most δ/16. Hence, with probability > 1− δ/16, ∀pr > τ , r ∈ I.

Define set A = {r|pr ≥ τ/8}, and R′ = R \ A. The second part is stated as Lem. 2.4.3
below with α = τ/8. We get that with probability > 1 − δ/2, all r ∈ R′ individually occur
less than sτ/2 times. Hence, none of them are in I.

Lemma 2.4.3 Let α ∈ (0, 1) and s > (c/8α) ln(c/(8αδ)). Consider a set R′ such that
∀r ∈ R′, 0 < pr ≤ α. With probability > 1 − δ/2, the following holds. For all r ∈ R′, the
number of occurrences of r in s uniform random samples from D is at most 4sα.
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Proof: We apply Claim 2.4.4 (given below). This gives a series of intervals R1, R2, . . . , Rn,
such that for all m < n, P (Rm ∩R′) ∈ [α, 2α]. Also, P (Rn ∩R′) ≤ 2α.

Consider some Rm for m < n, and let Yi be the indicator random variable for the ith
sample falling in Rm. We have E[Yi] ∈ [α, 2α] and E[Y ] ∈ [αs, 2αs] (where Y =

∑
i≤s Yi). It

will be convenient to use the bound E[Yi] ∈ [α/2, 2α] and E[Y ] ∈ [α/2s, 2αs].

Since the Yis are independent, we can apply the first Chernoff upper tail with ε = 1.
This yields Pr[Y > 2E[Y ]] ≤ exp(−E[Y ]/3). Since E[Y ] ≤ 2αs, Pr[Y > 4sα] ≤ Pr[Y >
2E[Y ]]. Since E[Y ] ≥ αs/2, exp(−E[Y ]/3) ≤ exp(−αs/6) = δα/3. Putting it together,
Pr[Y > 4sα] < δα/3. Hence, Pr[Y > 4sα] ≤ exp(−αs/3) = δα/3.

Now focus on Rn and define Y analogous to above. If P (Rn∩R′) > α/2, we can apply the
previous argument with ε = 1. Again, we deduce that Pr[Y > 4sα] ≤ exp(−sα/6) = δα/3.
If P (Rn ∩ R′) < α/2, we apply the second Chernoff tail with t = 4sα (observing that
4sα ≥ (2e)α/2) to deduce that Pr[Y > 4sα] ≤ 2−4sα ≤ δα/3.

We apply the union bound over all Rm for m ≤ n. Note that n is at most 1/α+ 1, since
P (Rm ∩ R′) ≥ 2α and the Rms are disjoint. So with probability at most δ/2, there exists
some Rd such that number of occurrences in Rd is more than 4sα. Hence, with probability
at least 1− δ/2, no element in R′ can appear more than 4sα times.

Claim 2.4.4 Let α ∈ (0, 1). Consider a set R′ such that ∀r ∈ R′, 0 < pr ≤ α. There
exists a sequence of numbers minr∈R′ r = z1, z2, . . . , zk = maxr∈R′ r (k ≥ 2) such that for all
i < k − 1, P ([zi, zi+1) ∩R′) ∈ [α, 2α] and P ([zk−1, zk]) ≤ 2α.

Proof: This is done through a simple iterative procedure. We start with z1 = minr∈R′ r.
Given zi, we describe how to find zi+1. Imagine zi+1 initialized to zi and continuously
increased until the P ([zi, zi+1] ∩ R′) (note that we use a closed interval) exceeds 2α. If zi+1

crosses maxr∈R′ r, then we have found the last interval and terminate this process. Now,
P ([zi, zi+1)∩R′) (the open interval) must be less than 2α, or we would have stopped earlier.
Furthermore, P ([zi, zi+1) ∩R′) = P ([zi, zi+1] ∩R′)− pzi+1

≥ 2α− α = α.

2.4.2 Finding an Approximate CDF

Our aim is to construct a series of disjoint intervals that (almost) equally partition the
probability mass. To gain some intuition, consider a positive integer v and a sequence of
numbers y0, y1, . . . , yv where y0 = minr∈R r, yv = maxr∈R r, and for all i < v, P ([yi, yi+1)) =
1/v. Our algorithm will try to find these intervals (for a parameter v). Of course, such
intervals may not even exist, due to the discrete nature of D. Nonetheless, we will try to
find suitable approximations. We assume that there are no values in D with high probability.
This is an acceptable assumption, since we run this procedure after “removing” prominent
values from D.
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There are two parameters for find-CDF: the sample size s and the block size b. For
convenience, assume b divides s. The output is a series of s/b intervals, each with (provably)
approximately the same probability mass. As we mentioned earlier, this constitutes an
approximation to the CDF, since the probability mass of the first k of these intervals will be
(approximately) proportional to k.

find-CDF(s, b)

Inputs: sample size s, block size b
Outputs: Intervals B1, B2, . . .

1. Generate set S of s independent random samples from D.
2. Sort these to get the (ordered) list {x1, x2, x3, . . . , xs}.
3. Output the intervals B1 = [x1, xb), B2 = [xb+1, x2b), etc. In general, the ith interval
Bi is [x(i−1)b+1, xib) and there are s/b blocks. The samples in this interval form the
associated set, so s(Bi) = |Bi ∩ S|.

This main theorem involves some play of parameters, and we express s and b in terms
of an auxiliary (integer) parameter v. Again, the constants chosen here are mainly given
for some concreteness and notational convenience. We use the notation A ∈ (1 ± β)B as a
shorthand for A ∈ [(1− β)B, (1 + β)B].

Theorem 2.4.5 Set s = cv ln(cv/δ) and b = s/v. Suppose there exists no r ∈ R such that
pr > 1/100v. With probability > 1 − δ, the following holds. For each output interval B,
P (B) ∈ (1 ± 1/10)/v. Furthermore, P ((minr∈R r, x1)) and P ((xs,maxr∈R r)) are at most
1/50v.

Proof: We first apply Claim 2.4.4 with α = 1/100v and R′ = R, to get the sequence
minr∈R r = z1, z2, . . . , zk = maxr∈R r. We have P ([zi, zi+1)) ∈ [1/100v, 1/50v] for i < k − 1
and P ([zk−1, zk]) ≤ 1/50v. We prove the following lemma.

Lemma 2.4.6 Set s = cv ln(cv/δ). Let Zi,j be the number of samples falling in interval
[zi, zj). With probability at least 1− δ/2, for all pairs i, j, Zi,j ∈ (1± 1/20)sP ([zi, zj)).

Proof: Fix interval [zi, zj). Let Xm be the probability of the mth sample falling in
[zi, zj). We have E[Xm] = P ([zi, zj)) ≥ 1/100v and all Xm’s are independent. Also, Zi,j =∑

m≤sXm, and E[Zi,j] = sP ([zi, zj)) ≥ s/100v. The upper Chernoff tail with ε = 1/20 yields
Pr[Zi,j < (1 − 1/20)sP ([zi, zj))] ≤ exp(−sP ([zi, zj))/800). The lower tail with ε = 1/20
yields Pr[Zi,j > (1 + 1/20)sP ([zi, zj))] ≤ exp(−sP ([zi, zj))/1200).

By a union bound over both tails and plugging in the bound P ([zi, zj)) ≥ 1/100v, the
probability that Xi,j /∈ (1±1/20)sP ([zi, zj)) is exp(−s/(800 ·100v))+exp(−s/(1200 ·100v)).
Doing the calculations (for sufficiently large constant c), this probability is at most δ/cv2.
A union bound over all intervals (at most

(
100v+1

2

)
of them) completes the proof.
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We apply Lem. 2.4.6, so with probability 1− δ/2, for all i, j, Zi,j ∈ (1± 1/20)sP ([zi, zj]).
Now, we apply Lem. 2.4.3 with α = 1/100v and R′ = R. With probability > 1 − δ/2, no
element occurs more than s/25v times. By a union bound, both these hold with probability
> 1− δ. Under these conditions, we complete our proof.

Fix a block B, and let [zi, zj) be the smallest such interval that contains B. Let [zi′ , zj′)
be the largest such interval inside B. Since (for any a) P ([za, za+1)) ≤ 1/50v, P ([zi, zj)) −
2 · (1/50v) ≤ P (B) ≤ P ([zi, zj)). Similarly, P ([zi′ , zj′)) ≤ P (B) ≤ P ([zi′ , zj′)) + 2 · (1/50v).

Let ` denote the number of sample points in B = [xh, xh+1). Since the number of samples
in [xh, xh+1] (the closed interval) is exactly b, ` ≤ b = s/v. Also, ` is at least b minus the
number of sample occurrences of xh+1. So ` ≥ b − s/25v = (1 − 1/25)s/v. We remind the
reader that Zi,j is the number of sample occurrences in [zi, zj), which is an interval containing
B. Hence ` ≤ Zi,j. Similarly, ` ≥ Zi′,j′ .

We use the bound that Zi,j ∈ (1± 1/20)sP ([zi, zj)) (similarly for Zi′,j′). Since ` ≤ Xi,j,
we get (1− 1/25)s/v ≤ (1 + 1/20)sP ([zi, zj)). Since ` ≥ Xi′,j′ , s/v ≥ (1− 1/20)sP ([zi′ , zj′).
Relating the probabilities to P (B), we get (1 − 1/25)/v ≤ (1 + 1/20)(P (B) + 1/25v) and
1/v ≥ (1− 1/20)(P (B)− 1/25v). Rearranging the terms, we complete the proof for output
interval B.

No samples fall in the intervals (minr∈R r, x1) and (xs,maxr∈R r). Hence, they must be
completely contained in some interval of the form [za, za+1], and their probabilities are at
most 1/50v.

2.5 Sublinear Colormap Results

In this section we demonstrate the results of applying our colormap generation algorithm to
a variety of datasets. These include the Mandelbrot dataset, a rotating disk reactor, and
two combustion datasets. We compare images of the data created with default colormaps of
several visualization tools to colormaps created using our technique.

The Mandelbrot dataset is a synthetic function that can be sampled at any resolution.
By contouring the volumetric function using a geometric sequence of isovalues, we obtained
auxiliary data used to characterize how prominent value detection behaves as distinct values
become near enough to appear as a continuous range, see Figure 2.6. We also run the
algorithm on the data without contouring in Figure 2.7.

The rotating disk reactor, shown in Figure 2.3, is a steady-state simulation of continuous
vapor deposition (CVD) carried out by MPSalsa [43, § D.2]. A notch has been removed
for illustrative purposes. It is a small dataset that contains thermodynamic state variables,
velocity, and chemical species concentrations at each node. The simulated region is a fluid-
filled cavity between a concentric tube and rod where reactants flow up from the unobstructed
volume (bottom), across the heated rod, and exit at the annulus (top). Of interest is the fact
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(a) VisIt (b) ParaView (c) Prominent values

Figure 2.3. Temperature inside a rotating disk reactor.
Sampling is able to identify constant boundary conditions
and highlight them where they would otherwise be obscured
by the full scalar value range.

that temperature boundary conditions have been imposed: the outer cylindrical wall is held
at an ambient temperature of 293.15 K, the inner rod cap is heated to 913.15 K, and the fluid
entering the chamber is a constant 303.15 K. Because the two lower temperature conditions
are very near each other relative to the heated rod cap, it is impossible to distinguish them
in the default views of ParaView and VisIt. However, by passing the temperature through
the sampling algorithm above, we obtain the PDF and CDF shown in Figure 2.4, along with
associated prominent values that pull out these features. By assigning colors far from the
palette curve to these prominent values, the difference is apparent.

In addition to these two datasets we also demonstrate our results on two combustion
datasets: HCCI, and Lifted Ethylene Jet. These datasets were generated by S3D [16], a
turbulent combustion simulation code that performs first principles-based direct numerical
simulations in which both turbulence and chemical kinetics introduce spatial and temporal
scales spanning typically at least 5 decades. The HCCI dataset is a study of turbulent auto-
ignitive mixture of Di-Methyl-Ether and air under typical Homogeneous Charge Compression
Ignition (HCCI) conditions [4]. This simulation is aimed at understanding the ignition
characteristics of typical bio-fuels for automotive applications and has a domain size of over
175 million grid points. The second simulation describes a lifted ethylene jet flame [53],
involved in a reduced chemical mechanism for ethylene-air combustion, with a domain size
of 1.1 billion grid points.

Figure 2.7 contains images comparing our technique with that of ParaView for the Man-
delbrot, HCCI, and Lifted Ethylene Jet datasets. The first row demonstrates default color
maps generated by ParaView for the Mandelbrot, HCCI, and Lifted Ethylene Jet datasets.
The second and third row contrast inter- vs. intra-mode differences with the prominent
values emphasized as colors with low lightness in CIELAB space, while the fourth and fifth
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Figure 2.4. The probability density function (PDF, top)
and cumulative density function (CDF, bottom) of the rotat-
ing disk reactor, shown in blue and obtained from the promi-
nent values and blocked ranges. Prominent values and their
probabilities are shown in red. Note that prominent values
have an absolute probability associated with them while the
PDF shows densities estimated from many different values;
none of the samples used to estimate the density occur with
frequencies approaching that of the prominent values.

row contrast inter- vs. intra-mode differences with prominent values de-emphasized as col-
ors with high lightness in CIELAB space. In particular, within the combustion datasets,
our approach visually depicts structures in the data that are difficult to see in the default
view. These structures cover a relatively small percentage of overall scalar domain, however
these values are observed with relatively high frequency within the data. We note that our
approach can be effective at identifying coherent structures in spite of the fact that we are
not integrating spatial information into our estimates.

Scalability: Figure 2.5 highlights the scalability of our approach for the Lifted Ethylene
Jet and HCCI datasets. We performed our experiments on Lens at the Oak Ridge Leadership
Computing Facility. Lens is a 77-node commodity-type Linux cluster whose primary purpose
is to provide a conduit for large-scale scientific discovery via data analysis and visualization
of simulation data. Lens has 45 high-memory nodes that are configured with 4 2.3 GHz AMD
Opteron processors and 128 GB of memory. The remaining 32 GPU nodes are configured
with 4 2.3 GHz AMD Opteron processors and 64 GB of memory. Datasets were evaluated
with τ = 0.001 and b = 1024, requiring approximately 100,000 samples to achieve a failure
probability of δ = 10−6.
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Figure 2.5. Our technique demonstrates good scalability
as the number of samples required by our algorithm is fixed
according to accuracy parameters as opposed to dataset size.
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(a) Inter-mode (b) Intra-mode

(c) ParaView

Figure 2.6. These images show 32 contour values, each
of which is identified by our algorithm as a prominent value.
Many of these isovalues lie closely together and are difficult
to differentiate using traditional default color maps. Using
our algorithm it is much easier to see that there are in fact
many individual surfaces.
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(a) ParaView Mandelbrot (b) ParaView HCCI (c) ParaView Lifted Ethylene Jet

(d) Inter-mode Mandel-
brot

(e) Inter-mode HCCI (f) Inter-mode Lifted Ethylene Jet

(g) Intra-mode Mandel-
brot

(h) Intra-mode HCCI (i) Intra-mode Lifted Ethylene Jet

(j) Inter-mode Mandelbrot (k) Inter-mode HCCI (l) Inter-mode Lifted Ethylene Jet

(m) Intra-mode Mandel-
brot

(n) Intra-mode HCCI (o) Intra-mode Lifted Ethylene Jet

Figure 2.7. The first row demonstrates default color maps gen-
erated by ParaView for the Mandelbrot, HCCI, and Lifted Ethylene
Jet datasets. The second and third row contrast inter- vs. intra-
mode differences with the prominent values emphasized as colors
with low lightness in CIELAB space, while the fourth and fifth row
contrast inter- vs. intra-mode differences with prominent values
de-emphasized as colors with high lightness in CIELAB space.
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Chapter 3

Enabling Dynamic Workflows:
Sublinear Trigger Detection 1

.

In this Chapter we show how sublinear algorithms can be deployed to enable dynamic
in-situ workflows, in which I/O and analysis frequencies are determined in an adaptive,
data-driven manner at runtime. We introduce a methodology that is broadly applicable, yet
can be specialized to provide confidence guarantees for application-specific simulations and
underlying phenomena. Our methodology comprises three steps:

1. Identify a noise-resistant indicator that can be used to track changes in simulation
state.

2. Devise a trigger which specifies that a property of the indicator has been met.
3. Design efficient and scalable algorithms to compute indicators and triggers.

To make decisions in a data-driven fashion, a user-defined indicator function must be com-
puted and measured in-situ at a relatively regular and high-frequency. Along with the
indicator, the application scientist defines an associated trigger, a function that returns a
boolean value indicating that the indicator has met some property, for example a threshold
value. Together, indicators and triggers define data-driven control-flow mechanisms within
a scientific workflow, see Figure 1.1(c). While this methodology is very intuitive and con-
ceptually quite simple, the challenges lie in defining indicators and triggers that capture the
appropriate scientific information while remaining cost efficient in terms of runtime, memory
footprint, and I/O requirements so that they can be deployed at the high frequency that is
required.

We demonstrate how recent advances in sublinear algorithms can be used to create ef-
ficient indicators and triggers to enable data-driven control-flow mechanisms, even in those
cases where standard implementations of the indicator and trigger would be significantly
too expensive. Sublinear algorithms are designed to estimate properties of a function over
a massive discrete domain while 1) accessing only a tiny fraction of the domain, and 2)
quantifying the error or uncertainty due to using only a sample of the data. Sublinear in-
dicators and triggers operate on a sample whose size is dependent on the accuracy of the

1The material presented in this chapter was also reported in [5, 44]
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desired result, rather than the input size. Consequently, sublinear indicators and triggers can
be deployed with high confidence to make workflow decisions in extreme-scale simulations.
Sublinear algorithms have their limitations; in particular, they are not amenable for those
control-flow decisions that are based on anomaly detection. However, they are well suited
to control-flow decisions regarding general trends in data, e.g., based on quantile plots of
trends of computationally expensive quantities of interest.

While our proposed approach is general, the first two steps can be made application
dependent, leveraging some knowledge of the underlying physics. In this work we demon-
strate our approach applied to dynamic workflow decisions in the context of direct numerical
simulations of turbulent combustion using S3D [16]. In this use case, workflow decisions re-
garding both grid resolution and I/O frequency can be made based on the detection of a
rapid increase in heat release. This means our indicator should be a precursor to heat release,
and not the heat release itself. What precedes the heat release? (see Figure 3.2.) Recent
studies have shown that chemical explosive mode analysis (CEMA) is a good lead indicator
of heat release events [31, 47], and in this work we show that CEMA can be used to devise
a noise-tolerant indicator function and trigger. CEMA is a point-wise metric computed at
each grid point. Our analysis of the distribution of CEMA values shows that the range of
CEMA values covered by the top percentiles, compared to the full range of CEMA values,
shrinks right before heat release and then expands afterwards. This change in distribution
of quantiles is illustrated in Figure 3.3 and provides the basis for our indicator and trigger.

Now that we have an intuition for what can be a good lead indicator for heat release,
the next step is to devise an indicator function and associated trigger that quantify the
shrinking/expansion of the portion of top quantiles of CEMA values over the full range. The
challenge here is the noise tolerance. While the range of the CEMA values is defined by the
minimum and the maximum, these values are, by definition, outliers of the distribution, and
thus their adoption will lead to noise-sensitive triggers. Instead we use the quantiles of the
distribution, which remain stable among instances of the same distribution. For instance,
we can replace the minimum with the 1-percentile and the maximum with the 98-percentile,
still capturing the concept of range, but yielding a much more noise-tolerant trigger, as
supported by experimental results (see §3.3).

The final step is to design efficient and scalable algorithms for the indicators and triggers
we have devised. Our experiments show that our CEMA-based indicators and triggers work
well in practice, however, exhaustive computation of CEMA values can dominate the total
simulation computation time and are thus prohibitively expensive. To overcome this compu-
tational bottleneck, we propose a sampling approach to estimate the quantiles. Our sampling
based algorithm comes with provable error/confidence bounds that are only a function of the
number of samples. With only 48K samples, the error will be less than %1 with confidence
%99.9, which in large-scale simulation runs leads to only a few samples per processor. Most
importantly, the number of samples is independent of the problem size, thus our proposed
sampling algorithm offers perfect scalability. Our experiments on homogeneous charge com-
pression ignition (HCCI) and reactivity controlled compression ignition (RCCI) simulations
show that the proposed method can detect heat release, with negligible computational over-

34



head. Moreover our results will be used to make dynamic workflow decisions regarding data
storage and mesh resolution in future combustion simulations.

The rest of the Chapter is organized as follows. §3.1 provides the background for our
work; we first review the need for and the state of adaptive workflows and describe the com-
bustion use case that is used throughout our work. §3.2 discusses the process of identifying
a noise-resistant indicator and trigger for phase change in a simulation, and includes physics
intuitions for how and why CEMA can be used to construct an indicator for heat release
for our combustion use case. In §3.3 we demonstrate how to compute the indicator and
trigger efficiently using a sublinear approach and we put all the pieces together in §3.4 to
demonstrate our technique on a full scale simulation.

3.1 Background

We begin this section by reviewing recent work in enabling complex scientific computing
workflows. We then provide an overview of sublinear algorithms and discuss how these
mathematical techniques can be deployed to make data driven decisions in-situ. We conclude
this section with a brief overview of our combustion use case.

3.1.1 Concurrent Analysis Frameworks

As we move to next generation architectures, scientists are moving away from traditional
workflows in which the simulation state is saved at prescribed frequencies for post-processing
analysis. There are a number of concurrent analysis frameworks available, wherein raw
simulation output is processed as it is computed, decoupling the analysis from I/O. Both
in-situ [54, 12, 19] and in transit [51, 1, 6] processing are based on performing analyses as the
simulation is running, storing only the results, which are typically several orders of magnitude
smaller than the raw data. This reduction mitigates the effects of limited disk bandwidth
and capacity. Operations sharing primary resources of the simulation are considered in-situ,
while in transit processing involves asynchronous data transfers to secondary resources.

Concurrent analyses are often performed at frequencies that are prescribed by the sci-
entists a priori. For those analyses that are not too expensive – in terms of runtime (with
respect to a simulation time step), memory footprint, and output size – the prescription
of frequencies is a viable approach. However, for those analyses that are too expensive,
prescribed frequencies will not suffice because the scientific phenomenon that is being sim-
ulated typically does not behave linearly (e.g., combustion, climate, astrophysics). When
scientists choose a prescribed I/O or analysis frequency that is frequent enough to capture
the science of interest, the costs incurred are too great, while a prescribed frequency that is
cost-effective and less frequent may miss the underlying scientific effects that simulation is
intended to capture. An alternative approach would be to perform expensive analyses and
I/O in an adaptive fashion, driven by the data itself. In [36, 35], such techniques have been
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developed based on entropy of information in the data, and building piecewise-linear fits of
quantities of interest. These approaches fit within the methodology proposed here and are
domain-agnostic. In this work we present a strategy that can leverage the scientists’ physics
intuitions, even when the in-situ analyses that captures those intuitions would otherwise be
too expensive to compute.

3.1.2 Combustion Use Case

Throughout this work we demonstrate our approach applied to a combustion use case, using
S3D [16], a direct numerical simulation (DNS) of combustion in turbulence. The combustion
simulations in our use case pertain to a class of internal combustion (IC) engine concept,
called premixed-charge compression ignition (PCCI). The central idea is that the air-fuel
mixture is allowed to ignite on its own, as opposed to being forced to ignite through a spark,
as is done in conventional spark-ignited (SI) engines. This results in substantial improve-
ments in fuel efficiency. However, one of the roadblocks to this technology is that the ignition
is difficult to control. In particular, it is difficult to predict the precise moment of ignition,
which is important for such an engine to be practical. It is undesirable to have simultaneous
ignition of the entire mixture, or even a large fraction of the mixture, which would result in
knocking, damaging the engine.

Within the broad framework of PCCI, several ideas have been proposed to alleviate the
difficulty noted above. All of them seek to control the ignition process by staggering it in
time, i.e. different parcels of the air-fuel mixture ignite at different times, so that the overall
heat release is delocalized in time. This is done typically by stratifying the mixture, i.e.
mixture properties are varied spatially in such a way that the desired heat release profile is
obtained. Here, we are interested in two specific techniques called homogeneous-charge com-
pression ignition (HCCI) [7] and reactivity-controlled compression ignition (RCCI) [28, 8].
In both cases, heat release starts out in the form of small kernels at arbitrary locations in
the simulation domain, see Figure 3.1. Eventually, multiple kernels ignite as the overall
heat release reaches a global maximum and subsequently declines. Since these simulations
are computationally and storage-intensive, we want to run the simulation at a coarser grid
resolution and save data less frequently during the early build-up phase. When the heat
release events occur, we want to run the simulation at the finest grid granularity possible,
and store the data as frequently as possible. Therefore, it is imperative to be able to predict
the start of the heat release event using an indicator and trigger that serve to inform the
application to adjust its grid resolution and I/O frequency accordingly, see Figure 3.2.
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Figure 3.1. In a Homogenous Compression Charge Igni-
tion simulation many small heat kernels slowly develop prior
to auto-ignition. In this image, regions of high heat kernels
are shown in orange and regions of high vorticity are shown
in green.
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Figure 3.2. The minimum (blue), maximum (red) and
mean (black) heat release values for each time step in the
simulation. Early in the simulation, we want to run at a
coarser grid resolution and save data less frequently. When
heat release events occur, we want to run the simulation at
the finest granularity, and save the data as frequently as pos-
sible. The vertical dotted lines in this figure define a range of
time steps within which we would like to make this workflow
transition (as identified by a domain expert).
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3.2 Designing a Noise-Resistant Indicator and Trigger

While general-purpose indicators could be computed (e.g. entropy of a quantity of interest),
we argue that application domain-specific indicators in many cases will best capture the
phenomena of interest. In this section we describe the design of an indicator and trigger for
heat release for our combustion use case. To provide context, we begin by discussing the
intuitions that informed our design.

3.2.1 Chemical Explosive Mode Analysis

One of the most reliable techniques to predict incipient heat release is the chemical explosive
mode analysis (CEMA). CEMA is a pointwise computational technique described in detail
by Lu et al. [31] and Shan et al. [47]. A brief description is provided here for reference. The
conservation equations for reacting species can be written as

Dy

Dt
= g(y) ≡ ω(y) + s(y)

The vector y in CEMA represents temperature and reacting species mass fractions, ω is the
reaction source term and s is the mixing term. The Jacobian of the right hand side can be
written as

Jg =
∂g(y)

∂y
= Jω + Js, where Jω =

∂ω(y)

∂y
and Js =

∂s(y)

∂y
.

The chemical Jacobian, Jω can be used to infer chemical properties of the mixture. This
is done using an eigen-decomposition of the Jacobian. If the eigenvalues of the Jacobian
corresponding to the non-conservative modes are arranged in descending order of the real
part, λe is defined as the first eigenvalue and λi are the remaining eigenvalues. The eigenmode
associated with λe is defined as a chemical explosive mode (CEM) if

Re(λe) > 0, for λe = beJωae, (3.1)

where be and ae are the left and right eigenvectors respectively for λe. The presence of a
CEM indicates the propensity of a mixture to ignite. CEMA is a pointwise metric, typically
computed at every grid point in the simulation domain. The criterion defined above then
indicates whether that point will undergo ignition or whether it has already undergone
ignition. If it has undergone ignition, we have Re(λe) < 0.
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Figure 3.3. In this percentile plot of CEMA values, the
lowest blue curve and the highest red curve correspond to the
1 and 100 percentiles (p0.01 and p1), respectively. The blue
curves correspond to p0.01...0.1, the green curves to p0.2...0.9
and the red curves to p0.91...1. We notice that as the simula-
tion progresses, the distance between the higher percentiles
(red curves) decreases then suddenly increases. Our aim is to
define a function that captures when this spread in the high
percentiles occurs, as this serves as a good indicator of igni-
tion (it falls within the user-defined window of true trigger
time steps, indicated by the vertical dotted lines).

Our CEMA-based indicator is based on global trends of CEMA over time. Consider
Figure 3.3 which provides a summary of the trends of CEMA values across all time steps in
a simulation. At timestep t, let C(t) be the array of CEMA values on the underlying mesh.
It is convenient to think of C(t) ∈ RN , where N is the total number of grid points. This
array is distributed among M processors such that each process accesses N/M points of the

field. Let Ĉ(t) be the sorted version of C(t). For α ∈ (0, 1], the α-percentile is the entry

Ĉ(t)dαNe. More specifically, it is the value in Ĉ(t) that is greater than at least dαNe values

in Ĉ(t). We denote this value by pα(t).

We notice that as the simulation progresses, the distance between the higher percentiles
(red curves) decreases then suddenly increases. This is illustrated in the plot by the spread
in the red curves that occurs just before the dashed line (indicating ignition). What does this
mean? Suppose the range of CEMA values (at time t) is [x, y]. If the distribution of CEMA
values was uniform in [x, y], then the α-percentile would have value around x + α(y − x).
Suppose the distribution was highly non-uniform, with a large fraction of small (close to
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x) values. Then, for large α, we expect the α-percentile to be smaller than x + α(y − x).
Alternately, for (large) α < β, in the uniform case, the difference between these percentiles
is (β−α)(y−x). If many values are small, we expect this difference to be larger. Essentially,
the gaps between the high percentiles become larger as more CEMA values move towards
the lower end of the range.

Our empirical observation is consistent with the underlying physics. From a physical
point of view, this trend in the distribution of CEMA values indicates the formation of the
first ignition kernels in the fuel-air mixture. As some of these kernels become fully burnt,
their CEMA values become negative. As a parcel of fluid transitions from fully unburnt
to partially burnt to fully burnt, its temperature increases monotonically and the CEMA
value associated with it reaches a peak value before crossing zero and attaining a negative
value indicating a fully burnt state. The CEMA values for several other kernels that are in
different stages of ignition, i.e. partially burnt, lie between those for unburnt (large positive)
and burnt (negative) mixtures. The large range of CEMA values in partially burnt mixtures
explains the range of values seen in the percentile plots as ignition is initiated in the mixture.

3.2.2 Designing a Noise-Resistant CEMA-Based Indicator

We introduce an indicator function, P-indicator that quantifies the distribution of the top
quantiles of CEMA values over time. The P-indicator measures the ratio of the range of
the top percentiles to the full range of CEMA values. Our indicator function relies on the
range of CEMA values, which are defined by their minimum and maximum. However, the
maximum and the minimum of a distribution, by definition, are outliers, and thus they can
change drastically between instances even when the underlying distribution does not change.
Hence, we avoid the maximum and minimum and replace them with high and low quantiles
of the distribution.

Formally, quantiles are defined as values taken at regular intervals from the inverse of
the cumulative distribution function of a random variable. For a given data set, quantiles
are used to divide the data into equal sized sets after sorting, and the quantiles are the
values on the boundary between consecutive subsets. A special case is dividing into 100
equal groups, when we can refer to quantiles as percentiles. This work focuses on percentiles
with numbers in the [0, 1] range (although all techniques presented here can be generalized
for any quantiles). For example, the 0.5 percentile will refer to the median of the data set.
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Figure 3.4. Pα,β,γ(t) values evaluated at each time step.
Here we illustrate α0 = 0.94, β = 0.98 and γ = 0.01 for time
step 340 of a simulation.

We substitute the maximum with a high percentile, which we denote by the β-percentile
where β is typically in the range [0.95, 0.99] and the minimum with a low percentile, which
we denote by the γ-percentile where γ is typically in the range [0.01, 0.05]. This substitution
provides stability to our measurements, without compromising what we want to measure.

Consider the following notation: Let A ∈ RN , be an array in sorted order. The α
percentile of this sorted array is exactly the entry AdαNe. We use pα to refer to this value
(i.e., pα = AdαNe. The A array will change at each step of the simulation, and thus we will
use A(t) and pα(t) to refer to the data on step t of the simulation.

We define our indicator on a given array A using 3 parameters: α, β and γ. As described
above, we use pβ(t) and pγ(t) as substitutes for the maximum and the minimum of A(t)
respectively, see Figure 3.4. We want to detect whether the range covered by top quantiles
shrinks, and α represents the lower end of the top quantiles. Therefore, the range of top
quantiles we measure is [pα(t), pβ(t)]. In our indicator, we choose α < β (typically in the
range [0.95, 0.99]) and γ (typically in the range [0.01, 0.05]). We measure the spread at time
t by the P-indicator:

Pα,β,γ(t) =
pα(t)− pγ(t)
pβ(t)− pγ(t)

. (3.2)

In this indicator, the denominator corresponds to the full range of CEMA values, while the
numerator corresponds to the range after the top quantiles are removed. When the CEMA
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values are uniformly distributed, Pα,β,γ(t) ≈ (α − γ)/(β − γ) ≈ α/β. When there is a
significant shift towards lower values, Pα,β,γ(t) will become smaller.
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Figure 3.5. Plots showing the (top row) percentiles of
the heat release rate, (middle row) percentiles of CEMA, and
(bottom row) the P-indicator, as indicated. In the percentile
plots, the lowest blue curve and the highest red curve corre-
spond to the 1 and 100 percentiles (p0.01 and p1), respectively.
The blue curves correspond to p0.01...0.1, the green curves to
p0.2...0.9 and the red curves to p0.91...1. The P-indicator shown
is evaluated for α0 = 0.94, β = 0.98 and γ = 0.01. The ver-
tical dotted lines crossing the images indicate a window of
acceptable “true” trigger time steps, as identified by a do-
main expert. For the RCCI cases, the trigger time ranges are
based on the High Temperature Heat Release (HTHR), i.e.,
the second peak in the Heat Release Rate (HRR) profiles.

Figure 3.5 illustrates percentile plots for heat release (top row) and CEMA (middle row).
In the percentile plots, the lowest blue curve and the highest red curve correspond to the 1
and 100 percentiles (p0.01 and p1), respectively. The blue curves correspond to p0.01...0.1, the
green curves to p0.2...0.9 and the red curves to p0.91...1. The P-indicator evaluated using (3.2)
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for α = 0.94, β = 0.98 and γ = 0.01 is shown in the bottom row of Figure 3.5. Results are
generated for four test cases described in Table 3.1. The vertical dotted lines were identified
by a domain expert who, via examination of heat release and CEMA percentile plots, visually
located the time steps in the simulation where the mesh resolution and I/O frequency should
be increased. We refer to these time steps as the “true” trigger time steps we wish to identify
with the P-indicator and trigger functions. Note, for the RCCI cases, there are two ignition
ranges. To simplify the following exposition, we focus on the second rise in the heat release
rate profiles, as this is the ignition stage of interest to the scientists. However, we note that
our approach is robust in identifying the first ignition stage as well.

Table 3.1. Four Combustion Use Cases analyzed in this
study. The “true” trigger time ranges are estimated based on
95−100th percentiles of the heat release rate. The computed
time ranges were evaluated using our quantile sampling ap-
proach. For the RCCI cases, the trigger time ranges are based
on the High Temperature Heat Release, i.e., the second peak
in the Heat Release Rate profiles.

Problem Number of Number of “True” Trigger Computed
Instance Grid Points Species Time Range Trigger Time

HCCI, T=15 451,584 28 250-315 250-262
HCCI, T=40 451,584 28 175-225 213-220
RCCI, case 6 2,560K 116 38-50 28-45
RCCI, case 7 2,560K–10,240K 116 42-58 35-50

3.2.3 Defining a Trigger

In addition to defining a noise-resistant indicator function, we also need to define a trigger
function that returns a boolean value, capturing whether a property of the indicator has
been met. Looking at Figure 3.5, we notice that across all experiments from Table 3.1, the
P-indicator is decreasing during the true trigger time step windows. Therefore, we seek to
find a value τP ∈ (0, 1), such that Pα,β,γ(t) crosses τP from above, as the simulation time t
progresses.

Figure 3.6 plots the trigger time steps as a function of τP for a variety of configurations of
α and β for the four use cases desribed in Table 3.1. The horizontal dashed lines indicate the
true trigger range identified by our domain expert. We consider those values of τP that fall
within the horizontal dashed lines to be viable τP values for our trigger. We find that across
all use cases, there are similar viable ranges of values for τP where the predicted trigger time
steps do not exhibit large variations. In Figure 3.7 we provide a plot the trigger time steps as
a function of τP for Pα=0.94,β=0.98,γ=0.01(t) that shows the viable range of τP is [0.725, 0.885].
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Figure 3.6. This figure shows the trigger time steps as a
function of τP for a variety of configurations of α and β for the
four use cases desribed in Table 3.1. The horizontal dashed lines
indicate the true trigger range identified by our domain expert.
The P-indicator is evaluated with percentiles computed using all
N grid points for the different use cases, as indicated.
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Figure 3.7. This figure plots the trigger time steps as a
function of τP for Pα=0.94,β=0.98,γ=0.01(t). There is a range of
viable values of τP ∈ [0.725, 0.885] that predict early stage
heat release.

3.3 Computing Indicators and Triggers Efficiently: A

Sublinear Approach

The previous section showed that a CEMA-based P-indicator and trigger are robust to noise
fluctuations and act as a precursor to rapid heat release in combustion simulations. In this
section we provide some details regarding its computational cost, which can be prohibitive for
large-scale simulations. We then introduce an efficient method to estimate the P-indicator.
Our method is based on quantile sampling and it comes with provable bounds on accuracy
as a function of the number of samples. Most importantly, the required number of samples
for a specified accuracy is independent of the size of the problem, hence our sampling based
algorithms offers excellent scalability.

3.3.1 Computational Cost of CEMA

Although CEMA is useful for predicting ignition, it is expensive to compute and thus his-
torically has not been used as a predictive measure. Computing CEMA values involves
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constructing a large, dense matrix at every grid point, and computing its eigendecomposi-
tion. For the use cases considered here, the time taken to compute the CEMA values scales
as the time taken to compute the eigendecomposition of an M ×M matrix, where M is the
number of species. Since the Jacobian does not have any spatial structure, the time taken
for the CEMA computation step is O(M3), which makes it increasingly expensive for larger
chemical mechanisms. As seen in Table 3.2, for the ethanol HCCI case presented here that
was simulated with 28-species, the cost of computing the CEMA value at every grid point
was approximately 5 times the cost of one simulation time-step. The RCCI case, on the
other hand included 116-species and the cost was roughly 60 times that of a single time step.
Although it is infeasible to compute CEMA at every grid point, our indicator function is
defined in terms of distribution of CEMA values, C(t), and this can be easily approximated
by a sampling mechanism, that has provable guarantees on the error.

3.3.2 Approximating Percentiles by Sampling

To remind our notation, we have an array A ∈ RN , in sorted order. Our aim is to estimate
the α-percentile of A. (We use pα to denote the percentiles.) Note that this is exactly the
entry AdαNe. Here is a simple sampling procedure.

1. Sample k independent, uniform indices r1, r2, . . . , rk in {1, 2, . . . , N}.
Denote by Â the sorted array [A(r1), A(r2), . . . , A(rk)].

2. Output the α-percentile of Â as the estimate, p̂α.

In the next section, we quantitatively show that our estimation, p̂α, is approximately
close to the the true pα. Such sampling arguments were also used in automatic generation
of colormaps for massive data [50].

3.3.3 Theoretical Bounds on Performance

Our analysis relies on the following fundamental result by Hoeffding, which provides a con-
centration inequality for sums of independent random variables.

Theorem 3.3.1 (Hoeffding [22] or Theorem 1.1 in [17]) Let X1, X2, . . . , Xk be inde-
pendent random variables with 0 ≤ Xi ≤ 1 for all i = 1, . . . , k. Define X = 1

k

∑k
i=1Xi. For

any positive t, we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp(−2t2/k).

Lemma 3.3.2 Fix α and parameters δ, ε ∈ (0, 1), such that α > ε and α + ε ≤ 1. Set

k = d log(4/δ)
2ε2
e. Then p̂α ∈ [pα−ε, pα+ε] with probability at least 1− δ.
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Table 3.2. Additional cost associated with computing
CEMA indices at every grid point (no sub-sampling) for two
chemical mechanisms. Cost is given in seconds of wall-clock
time per overall simulation time step.

Fuel Mechanism Cost without Cost with Cost
size (species) CEMA (sec/ts) CEMA (sec/ts) factor

Ethanol 28 0.3 1.5 5
Primary Reference

Fuel (PRF) 116 3.0 180.0 60

Proof: Let Xi be the (Bernoulli) indicator random variable for the event ri < (α − ε)N .
(i.e.,Xi = 1, if ri < (α− ε)N , and zero otherwise.) Note that

E[Xi] = Pr[Xi = 1] = Pr[ri < (α− ε)N ] < α− ε.

By linearity of expectation, E[
∑

i≤kXi] < k(α − ε). By Hoeffding’s inequality (Theo-
rem 3.3.1),

Pr[
∑
i≤k

Xi − E[
∑
i≤k

Xi] ≥ εk] ≤ 2 exp(−2ε2k).

The latter is at most δ/2. Thus, with probability > 1− δ/2,∑
i≤k

Xi ≤ E[
∑
i≤k

Xi] + εk < αk.

In plain English, with probability at least 1− δ/2, the number of random indices strictly less
than (α− ε)N is strictly less than αk.

We repeat a similar argument with indicator random variable Yi for the event ri <
(α + ε)N . So E[Yi] > α + ε and E[

∑
i≤k Yi] > k(α + ε). By Hoeffding’s inequality,

Pr[E[
∑
i≤k

Yi]−
∑
i≤k

Yi > εk] < δ/2.

With probability at least 1− δ/2, the number of random indices at most (α+ ε)N is strictly
more than αk.

By the union bound on probabilities, both events hold simultaneously with probability
> 1− δ. In this situation, the α-percentile of the sample lies between the pα−ε and pα+ε.

It bears emphasizing that the number of samples, k, is independent of the problem size,
N , and only depends on ε, δ. So, the required number of samples only depends on the desired
accuracy, not on the size of the data. This is the key to the scalability of our approach.

To compute the P-indicator, Pα,β,γ, we just employ the procedure above to get estimates
p̂α, p̂β, p̂γ. We can use the same samples (with only an additive increase to k) for all estimates,
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so we do not have to repeat the procedure 3 times. That yields the approximate P-indicator,
denoted by P̂α,β,γ.

Theorem 3.3.3 Fix α, β, γ and parameters δ, ε ∈ (0, 1) such that α < β − 2ε and ε <

min(α, β, γ). Set k = d log(12/δ)
2ε2

e. With probability > 1− δ,

P̂α,β,γ ∈ [Pα−ε,β+ε,γ+ε, Pα+ε,β−ε,γ−ε].

Proof: Apply Lem. 3.3.2 for each of α, β, γ with error parameter δ/3. That gives the
value of k as stated in the theorem. By the union bound on probabilities, all the following
hold simultaneously with probability > 1 − δ: p̂α ∈ [pα−ε, pα+ε], p̂β ∈ [pβ−ε, pβ+ε], and
p̂γ ∈ [pγ−ε, pγ+ε], Hence,

P̂α,β,γ =
p̂α − p̂γ
p̂β − p̂γ

≤ pα+ε − p̂γ
pβ−ε − p̂γ

≤ pα+ε − pγ−ε
pβ−ε − pγ−ε

For the last inequality, observe that for fixed x < y, (x− z)/(y − z) is a decreasing function

of z. An analogous argument proves the lower bound for P̂α,β,γ.
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Figure 3.8. The number of samples needed for different
error rates and different levels of confidence. A few data
points at 99.9% confidence are highlighted.

Figure 3.8 shows the number of samples needed for different error and confidence rates.
We show three different curves for difference confidence levels. Increasing the confidence has
minimal impact on the number of samples. The number of samples is fairly low for error
rates of 0.1 or 0.01, but it increases with the inverse square of the desired error. Nonetheless,
the four million samples required for an error rate of ε = .001 at 99.9% confidence requires
only tens of samples per processor at the extreme scales. In practice, ε = .01 at 99.9%
confidence, thus 48,000 samples was enough to compute robust estimates.
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Interpretation of the Bounds

Our bounds on quantile estimations are based on which quantile we sample. That is our
sampling algorithm may return the α + ε-th quantile instead of α-th quantile, and we can
quantify this error, ε, as a function of the number of samples. However, it does not quantify
the difference between pα and p̂α = pα+ε. Subsequently, Theorem 3.3.3 shows that the range
we sample can be made arbitrarily close to the original range by increasing the number of
samples, and bounds the error in the range for any given sample size. Yet, it does not
bound the difference between Pα,β,γ and P̂α,β,γ, which depends on the distribution of the
data. However, this is not a critical issue for our purposes, as we argue next, and empirically
verify with experimental results in the next section.

The difference between Pα,β,γ and P̂α,β,γ will be disproportional to ε only when there
are gaps in the distribution around one of the three parameters, α, β, or γ. Note that
these three parameters are user specified, and they are used to quantify the range of top
percentiles. If the underlying distribution is such that we expect many such gaps frequently,
then our metric itself will be extremely sensitive to the choice of the input parameters, even
if compute the metric exactly. That is our metric should not produce vastly different results
when we choose α = 0.940 or α = 0.941. However, there is still a possibility that such gaps
may form, just like any other low probability event. One trick to improve robustness of our
metric against such low probability events is to pick the input parameters randomly from a
specified range. That is instead of specifying γ as 0.03 we can pick it randomly in the range
[0.02, 0.04]. By such randomness, even if there is a gap at point, φ, the probability that φ is
in the [β − ε, β + ε] range will approach to zero with increasing number of samples and thus
decreasing ε.

However, we want to note that this is only a theoretical exercise. From a practical
perspective, we have not observed any gaps in the distribution and pα+ε is a good estimate
for pα, and it gets better with more samples. For the experiments in the remainder of this
work, we have not used the randomization technique when choosing the parameters, γ, α,
and β.

3.3.4 Empirical Evaluation of the Sampling Based Algorithm

In this section we present our empirical evaluation of the proposed sampling techniques.
Experiments in this section will focus on only the evaluation of the proposed algorithm,
since we first want to verify that the proposed sampling technique accurately estimates the
P-indicator. In the next section, we will put all pieces together and study how the P-indicator
and the proposed technique perform together in-situ as the simulation is running.

In the first set of experiments, we investigate the error in quantile ranges. For these
experiments, we use 16 randomly selected instances of CEMA distributions from various
HCCI and RCCI simulations. These instances are named such that the first part refers to
the simulation type and case, and the last part refers to the time step. We use sampling
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to estimate the α = 0.94 percentile, which returns an entry from the distribution. Then we
check the percentile of this entry in the full data, say α + ε. In the first set of experiments,
we focus on this difference ε, which we bounded in our theoretical analysis.

Figure 3.9 (a) presents the results of our investigation into the error of quantile ranges
for various data sets and increasing number of samples: 12,000, 24,000, and 48,000. For
this figure, we ran our sampling algorithm 100 times for each instance (i.e., a data set and
number of samples combination) and computed ε. The figure presents the average |ε| for
each instance. As the figure shows, sampling yields accurate estimations in all data sets, and
the error drops with increasing number of samples. It becomes extremely small for 48,000
samples. Here an error of 0.001 means we will be using p0.941 quantile instead of p0.940. We
did not find it necessary to investigate increasing the number of samples further.
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Figure 3.9. (a) Error in the percentile sampled as the
average of absolute values of 100 runs on various data sets
with increasing number of samples. (b) The distribution of
errors of each data set for the percentile study using 48,000
samples.

In Figure 3.9 (b), we show the distribution of errors in percentiles sampled for the 100
runs of each dataset using 48,000 samples. In this plot, the central mark (red) shows the
median error, while the edges of the (blue) box are the 25th and 75th percentiles. The
whiskers extend to the most extreme points considered not to be outliers, and the outliers
(red plus marks) are plotted individually. As this figure shows, the estimates are consistently
accurate, and the results in practice are much better than those indicated by Theorem 3.3.3.
According this theorem, 48,000 samples lead to an error of ≈ 0.01 with a confidence of
%99. This means in 100 experiments we expect to have 1 run for which the error is > 0.01.
However, in the 16 data sets with 100 runs each the maximum error was 0.005, half of what
the upper bound indicates. These results show that sampling enables us to sample a quantile
that is consistently accurate.

In the next set of experiments, we look at how our indicator is affected by the minor
errors in the quantile. More specifically, we want to see how the difference between pα and
pα+ε affect our indicator. For those experiments, we used 16 randomly selected instances
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of CEMA distributions from various HCCI and RCCI simulations and computed the P-
indicator exactly, and using sampling with parameters, γ = 0.01 α = 0.94, and β = 0.98.
While we repeated the same experiments with different parameters, we have not observed
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Figure 3.10. (a) Errors in estimation of the P-indicator for
increasing number of samples. (b) The distribution of errors
in estimation of the P-indicator for 48,000 samples.

any sensitivities of our tests to the choice the parameters, hence we will present results for
only this setting.

Figure 3.10(a) presents results for our indicator tests for various data sets and increas-
ing number of samples: 12,000, 24,000, and 48,000. For this figure, we ran our sampling
algorithm 100 times on each data set and number of samples, and computed the difference
between exact and estimated values of the P-indicator for each instance. The figure presents
the average absolute error for each instance. As the figure shows, sampling produces ac-
curate estimations in all data sets, and the error drops with increasing number of samples.
The bounds on Theorem 3.3.3 does not apply in this case. but regardless, the errors are
very small, and certainly sufficient to detect any trend in the distribution of the underlying
values.

Figure 3.10(b) shows the distribution of errors for the P-indicator test for 100 runs of each
dataset using 48,000 samples. In this plot, the central mark (red) shows the median error,
while the edges of the (blue) box are the 25th and 75th percentiles. The whiskers extend to
the most extreme points considered not to be outliers, and the outliers (red plus marks) are
plotted individually. As this figure shows, the estimates are consistently accurate.

Lastly, we performed a series of experiments examining the variation in the trigger time
steps as a function of the number of samples used per processor. The data for Figure 3.11
was generated via 200 realizations of the P-indicator with α = 0.94, β = 0.98 and γ = 0.01,
and τP drawn from [0.725, 0.885]. The horizontal dashed lines in this figure define the range
of true trigger time steps within which we would like to make the workflow transition (as
identified by a domain expert). This plot demonstrates that, even across a wide range of τP
values, with a small number of samples per processor, the quantile sampling approach can
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Figure 3.11. Plots illustrating the variability of the trig-
ger time steps predicted by the P-indicator and trigger as a
function of the number of samples per processors. The data
for these plots was generated via 200 realizations of the P-
indicator with α = 0.94, β = 0.98 and γ = 0.01, and with τP
drawn from [0.725, 0.885]. The horizontal dashed lines define
the range of time steps within which we would like to make
the workflow transition (as identified by a domain expert).

52



accurately estimate the true trigger time steps as defined by the domain expert. The next
step will be putting all the pieces together to see how we can predict heat release in-situ,
within a simulation run.

3.4 Putting All Pieces Together: Diagnosing Heat Re-

lease With Sublinear Algorithms in S3D

The algorithm described in the previous section was deployed in-situ for a two-dimensional
direct numerical simulation (DNS) of the ethanol HCCI problem (Case HCCI, T=40 in
Table 3.1). The DNS was run on half a million grid points with 784 processors. 20 points
were sampled at random from each processor for the CEMA analysis, generating a total of
15680 samples for computing the trigger with the P-indicator. The parameters for computing
the metric were chosen as follows: α = 0.94, β = 0.98 and γ = 0.01. This corresponds to
less than 4% of the total simulation volume.

Figure 3.12 shows the P-indicator being computed in-situ inside the simulation code.
From top to bottom, the rows show the result when the indicator is computed every 10, 100
and 1000 time steps. As the frequency of computing these indicator increases, the signal tends
to get noisier. However, the overall trends and triggers do not change. These images show
that our quantile-sampling approach provides a well defined trigger, using τP ∈ [0.725, 0.885]
and can be used with confidence to predict the rapid rise in the heat release rate that we
require to guide temporal and spatial refinement decisions in-situ.

As can be inferred from Table 3.2, performing the CEMA analysis on all grid points would
increase the cost of the simulation by a factor of 5, or 400%, which is clearly infeasible. Using
the sublinear sampling algorithm on the other hand, incurs an overhead of only 1% on the
total simulation cost when performed every ten time-steps. The cost savings are even more
dramatic in larger, three-dimensional production runs, as the number of samples required
does not increase with the number of grid points. Furthermore, we note the cost savings are
further increased for larger mechanisms such a primary reference fuel (PRF), composed of a
blend of iso-octane and n-heptane. For the PRF mechanism, the CEMA overhead without
sublinear sampling would be a factor of 60 or more. We plan to deploy this algorithm in-situ
in future large three-dimensional production simulations using S3D, especially with large
chemical mechanisms such as PRF.
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Figure 3.12. Plots showing P-indicator being computed
every 10 (top), 100 (middle) and 1000 (bottom) time steps.
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Chapter 4

Accomplishments

This Chapter highlights the accomplishments and outputs of this projects in terms of publi-
cations, presentations, and follow-on funding that was obtained as a result of this research.

Publications

• Data-driven visual exploration of extreme-scale time varying data. D. Thompson, D.
Rogers, N. Fabian, J. Wendelberger, F. Samsel, T. Turton, J. Bennett, A. Pinar (in
preparation)
• A dashboard for comparative visualization of many-variate data. D. Thompson, P.

Pebay, H. Kolla, J. C. Bennett, A. Pinar (in preparation)
• Trigger detection for adaptive scientific workflows using percentile sampling. J. Ben-

nett, A. Bhagatwala, J. Chen, C. Seshadhri, A. Pinar, M. Salloum, to appear in: SIAM
Journal on Scientific Computing. (SAND2015-5112)
• Enabling adaptive scientific workflows via trigger detection. M. Salloum, J. Bennett,

A. Pinar, A. Bhagatwala, J. Chen, to appear in In Situ Infrastructures for Enabling
Extreme-scale Analysis and Visualization 2015 (SAND2015-6992 C)
• Sublinear Algorithms for Extreme-scale Data Analysis. C. Seshadhri, A. Pinar, D.

Thompson (Kitware), and J. Bennett, in Topological and Statistical Methods for
Complex Data: Tackling Large-Scale, High-Dimensional, and Multivariate Data Sets
Springer, Nov 2014. (SAND2014-16025 B)
• A provably-robust sampling method for generating colormaps of large data. D. Thomp-

son, J. Bennett, C. Seshadhri, and A. Pinar, in Proc. IEEE Symposium on Large-Scale
Data Analysis and Visualization (LDAV), 2013. (SAND2013-4171C)
• Avoiding the Global Sort: A Faster Contour Tree Algorithm. B. Raichel, C. Seshadhri

(under review)

Presentations

• A project in the life of a data scientist, ICERM workshop on Mathematics in Data
Science, Janine Bennett (Invited)
• Extreme-Scale In situ Data Analysis Broader Engagement Panel, Supercomputing

2014, New Orleans, LA. Nov 16, 2014 (invited)
• Sublinear Algorithms for In-situ & In-transit Data Analysis at Exascale, DOE ASCR
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Exascale Math Working Group Workshop (EXAMath13), Ali Pinar, Washington DC,
August, 2013.
• Challenges in Turning Science Data into Knowledge Janine Bennett SOS 17, Jekyll

Island, GA April 2013 (invited)
• A provably-robust sampling method for generating colormaps of large data. (LDAV),

2013.

Follow on Funding In 2014 an New ASCR sponsered project was funded, titled A Uni-
fied Data-Driven Approach for Programming In-Situ Analysis and Visualization. This is a
three year project, with Sandia’s effort funded at $405K/year. Other collaborators include
Los Alamos National Laboratory, Kitware Inc, the University of Utah, and Stanford. The
overarching goal of this project is to explore and develop a data-driven approach for devel-
oping in-situ-enabled applications on future extreme-scale, high-performance systems. The
success of this approach will be evaluated by exploring advanced data reduction algorithms
and key data analysis and visualization operations including sublinear techniques. Some of
the research efforts on this upcoming ASCR project are ideas that were generated as a direct
result of the accomplishments and research performed by this LDRD.
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Chapter 5

Conclusions and Lessons Learned

This LDRD has made several key contributions, highlighting the potential for sublinear al-
gorithms to mitigate HPC challenges posed by next generation computing platforms. In
particular, this LDRD research has focused on addressing several fundamental issues posed
by the shift to in-situ, concurrent workflows. We have explored how sublinear algorithms
could be leveraged to make the analysis algorithms themselves more efficient. Towards this
end, we have developed a sampling based method to generate colormaps. Our algorithm
identifies important values in the data, provides a provably-good approximation of the CDF
of the remaining data, and uses this information to automatically generate discrete and/or
continuous color maps. Our experiments showed the new colormaps yield images that better
highlight features within the data. The proposed approach is simple and efficient, yet prov-
ably robust. Most importantly, the number of samples required by the algorithm depends
only on desired accuracy in estimations and is independent of the dataset size. This provides
excellent scalability for our algorithms, as the required preprocessing time remains constant
despite increasing data as we move to exascale computing. The algorithms are also efficiently
parallelizable and and yield linear scaling. These algorithms have been made available to
the broader scientific community in Paraview and VTK, both open source Kitware, Inc.
products.

We have also developed an approach for enabling dynamic, adaptive, extreme-scale sci-
entific computing workflows. We introduce the notion of indicators and triggers that are
computed in-situ, that support data-driven control-flow decisions based on the simulation
state. For those indicators and triggers that are computationally prohibitive to compute,
we demonstrate how sublinear algorithms enable their estimation with high confidence while
incurring extremely low computational overheads.

In the context of our adaptive workflow research, we demonstrate our approach in prac-
tice using a proposed indicator to detect changes in the underlying physics of a combustion
simulation. The goal of the indicator is to predict rapid heat release in direct numerical sim-
ulations of turbulent combustion. We show that chemical explosive mode analysis (CEMA)
can be used to devise a noise-tolerant indicator for rapid increase in heat release. Specif-
ically, we study the distribution of CEMA values, and show that heat release is preceded
by a decrease in the range of top quantiles in this distribution. We devise an indicator to
quantify this intuition and show that it can serve as a robust precursor for heat release. The
cost of exhaustive computation of CEMA values dominates the total simulation time, and we
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propose a sublinear algorithm based on quantile sampling to overcome this computational
bottleneck. Our algorithm comes with provable error/confidence bounds, as a function of the
number of samples. Most importantly, the number of samples is independent of the problem
size, thus our proposed sampling algorithm offers perfect scalability. Our experiments show
that our sublinear algorithm is nearly as accurate as an exact algorithm that relies on ex-
haustive computation, while taking only a fraction of the time. Essentially, sampling in this
case provides the algorithmic foundation to turn a critical yet intractable indicator into a
practical indicator that takes negligible time. Our experiments on homogeneous charge com-
pression ignition (HCCI) and reactivity controlled compression ignition (RCCI) simulations
show that the proposed method can predict heat release, and its computational overhead is
negligible.

One of the risks identified from the start with our project was that of adoption. While it
might be possible to generate some very interesting tools that leverage sublinear algorithms,
those tools are not of great value if scientists are wary to use them. To mitigate this risk,
throughout this LDRD, we worked very closely with application developers, particularly
in the area of combustion. Our goal was to develop new theory, demonstrate results in
practice on current problems, and demonstrate the potential of our approach to mitigate
exascale research challenges. Through our socialization with the scientists, some interesting
findings emerged. First, sampling is not always computationally efficient enough to warrant
the tradeoff in accuracy. In an HPC scientific simulations, the mesh and associated data are
distributed across processing elements. Data decomposition is optimized for the simulation
and communication costs end up dominating runtime. Overall, we found that scientists
werent interested in sampling of final quantities of interest. The reasons were two-fold: they
wanted to maintain reproducibility of their results, and they wanted teh ability to compare
their results with those of previous approaches. However, scientists were very interested
to leverage sampling to enable new capabilities. This included things like improved visual
debugging, the enabling more in-depth post-processing at higher temporal resolution, and the
judicious use of resources (I/O, compute time) via adaptive, data-driven workflows. Lastly,
we found that combined empirical and theoretical proofs were critical to adoption.

In summary, the impact of our LDRD research is two fold. From the applications’ per-
spective, we have introduced an important tool that enables feature detection and adaptive
workflows in their simulations, and have demonstrated results in both cases for combustion,
an important area of computational science and engineering. Our proposed methods, enable
the controlling of identification of features, mesh granularities, and adaptive I/O frequencies.
It is already becoming critically important to have adaptive control over these quantities, but
will be crucial as we look ahead to exascale computing. From an algorithmic perspective, our
efforts showcased how sublinear algorithms, a recent development in theoretical computer
science can be applied in-situ. We believe these algorithmic techniques hold great potential
for in-situ analysis, and we expect them to be more widely used in the near future.
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